Code: 19EC3403, 19EE3403

II B.Tech - II Semester - Regular Examinations - AUGUST 2021

ANALOG CIRCUITS

(Common to ECE, EEE)

Duration: 3 hours Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 5 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
- 4. All parts of Question paper must be answered in one place

PART - A

- 1. a) List out advantages and disadvantages of negative feedback.
 - b) What are the conditions for sustained oscillations?
 - c) Define CMRR and show its ideal and practical values.
 - d) Draw the pin diagram of IC 555.
 - e) Define the terms settling time and conversion time of DAC.

PART – B

UNIT - I

- 2. a) Explain the following general characteristics of negative feedback amplifiers briefly.
 - i. Desensitivity
 - ii. Non-linear distortion

6 M

	b)	An amplifier has an open loop gain of 1000 and a	6 M
		feedback ratio of 0.04. If the open loop gain changes by	
		10% due to temperature, find the percentage change in	
		gain of the amplifier with feedback.	
		OR	
3.	a)	Develop the expression for output resistance in voltage	
		series (series-shunt) feedback amplifier.	6 M
	b)	Compare various negative feedback topologies.	6 M
		<u>UNIT – II</u>	
4.	a)	Develop the expression for the frequency of oscillation	
		of RC phase shift oscillator.	6 M
	b)	Draw the circuit of Colpitts oscillator. How are the	
		feedback requirements met in it? Derive the expression	
		for frequency of oscillation.	6 M
		OR	
5.	a)	Show that maximum efficiency of transformer coupled	
		class A amplifier is 50%.	6 M
	b)	Explain with neat diagram, the working of a class B	
		amplifier.	6 M
		<u>UNIT-III</u>	
6.	a)	Discuss basic inverting and non-inverting amplifiers	
		and derive the expression for gains.	6 M
	b)	What is CMRR? For a given op-amp, $CMRR = 10^5$ and	
		differential gain $A_d = 10^5$. Determine the common-	
		mode gain A _{cm} of the op-amp.	6 M
		OR	

7.	a)	Draw the circuit diagram of integrator by using IC 741	
		op-amp and explain its operation.	6 M
	b)	Draw the logarithmic amplifiers using op-amp and	
		explain its operation.	6 M
		<u>UNIT – IV</u>	
8.	a)	Draw the internal diagram of IC 555 and explain its	
		operation.	6 M
	b)	Develop the expression for frequency of oscillation of	
		astable multivibrator using 555 timer.	6 M
		OR	
9.	a)	Elaborate about first order high pass Butterworth filter	
		circuit with neat sketches.	6 M
	b)	Design a low pass filter with a cut-off frequency of 1.5	
		KHz and a pass band gain of 2.	6 M
		$\overline{\mathbf{UNIT} - \mathbf{V}}$	
10.	a)	Develop the expression for output voltage of R-2R	
		Digital-to Analog converter.	6 M
	b)	Compare weighted resistor D/A converter and R-2R	
		D/A converter.	6 M
		OR	
11.	a)	Describe the operation of successive approximation	
		type analog to digital converter.	6 M
	b)	List out different types of ADCs and compare their	
		merits and demerits.	6 M